Trusted Virtual Domains on OKL4:
Secure Information Sharing on Smartphones

Lucas Davi
System Security Lab/CASED
Technische Universitat
Darmstadt, Germany
lucas.davi@trust.cased.de

Alexandra Dmitrienko
Fraunhofer SIT
Darmstadt, Germany

alexandra.dmitrienko®@trust.cased.de

Christoph Kowalski
HGI System Security Lab
Ruhr-Universitat Bochum,

Germany
christoph.kowalski@rub.de

Marcel Winandy
HGI System Security Lab
Ruhr-Universitat Bochum,

Germany
marcel.winandy@trust.rub.de

ABSTRACT

The flexibility and computing power of modern smartphones
to install and execute various applications allows for a rich
user experience but also imposes several security concerns.
Smartphones that are used both for private and corporate
purposes do not separate the data and applications of dif-
ferent security domains, and users are usually too unskilled
to deploy and configure extra security mechanisms. Hence,
data leakage and unwanted information flow may occur.

In this paper we present the design and implementation
of the Trusted Virtual Domain (TVD) security architecture
for smartphones. The TVD concept separates data and ap-
plications of different security domains and automates the
security configuration on devices. In particular, we build our
solution on top of the OKL4 microkernel, which provides the
basic isolation properties, and extend it with a framework
that realizes the TVD policy enforcement for Android op-
erating systems. Our results show that the TVD security
architecture can be built and used on modern smartphones,
but there are also limitations that current security kernels
like OKL4 have to address to improve the user experience.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
TVD, smartphone, OKL4, microkernel

@ ACM, 2011. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 6th ACM Workshop
on Scalable Trusted Computing (STC 2011).
http://doi.acm.org/10.1145/2046582.2046592

1. INTRODUCTION

Smartphones are increasingly used as general purpose com-
puting devices with permanent Internet connection. Users
can install and execute almost arbitrary applications on these
devices. In particular, smartphones are often used for dif-
ferent tasks with different security requirements, e.g., for
playing games, taking photos, running private online bank-
ing, or even accessing a corporate network. This imposes
several threats as the phone operating system (OS) is typi-
cally derived from desktop counterparts and, hence, inherits
the same or similar security shortcomings. Moreover, even
though modern smartphone operating systems like Apple’s
iOS and Google’s Android include application sandboxing
and (in case of Android) advanced application permission
control, these systems still lack support of grouping applica-
tions to different security domains and apply a correspond-
ing separation mechanism. For instance, data belonging to
an application of one domain (e.g., corporate data) should
not be accessible in another domain, and it should hence
be encrypted appropriately before transferred out of the do-
main (e.g., to the Internet), and decrypted again when im-
ported back (e.g., to the corporate domain on the same or
another device).

Today, the borders of private and corporate usage be-
come indistinct due to convenient features of modern smart-
phones, which are often in private possession of users, but
also used for some corporate tasks (email, todo lists, con-
tacts, etc.). Currently, users have to take care themselves
to separate or encrypt data and applications according to
the security requirements of their enterprises. However, the
average user is usually unskilled in deploying adequate secu-
rity mechanisms or configuring them appropriately. Alter-
natively, enterprises may prohibit usage of corporate smart-
phones for private needs, forcing the users to have a dedi-
cated device for private usage. This approach is secure be-
cause it provides physical isolation between corporate and
private applications and their data. But it is also costly and
user unfriendly, as it requires double costs for hardware and
the user to carry two devices at the same time.

We aim to address those existing limitations and propose
a trade-off solution which is (almost) as secure as physi-
cal separation but allows usage of a single device for busi-
ness and private needs at the same time. We leverage the

http://doi.acm.org/10.1145/2046582.2046592

idea of Trusted Virtual Domains (TVDs) [16, 7, 8], known
from data centers, which aims to tackle similar security risks.
TVDs are a security framework for distributed systems that
aims to provide verified containment, trust in components,
simplicity in management and secure communication be-
tween its participants. Members of a TVD can communicate
freely with each other, whereas communication to or from
other systems is subject to explicit information flow control.

We deploy the TVD concept on smartphone devices with
the goal to isolate corporate applications and data from un-
trusted software. The prominent advantage of TVD usage
in this context is the transparent policy enforcement and
simplified and scalable management based on TVD policies.
Thus, security mechanisms that enforce the separation on
TVD-enabled smartphones are transparent to the user and
do not require any additional configuration overhead.

Contributions and Outline.
In this paper we present the realization of the TVD con-
cept on smartphones. In particular, our contributions are:

e TVD Framework for Smartphones: We present
the design (Section 3) and implementation (Section 5)
of a TVD framework on top of the OKL4 microker-
nel, and we support to run Android operating systems
and their applications in isolated environments to sep-
arate data and applications of corresponding security
domains based on TVDs. Moreover, we provide an
evaluation of our prototype with respect to usability
and performance (Section 6).

e Policy Mapping Tool: To realize the TVD policy
enforcement on OKL4, we have developed a policy
mapping tool that translates the general TVD policy
rules to specific security mechanisms of the OKL4 ker-
nel (Section 4). We provide a full implementation and
report on limitations of the current OKL4 which affect
the user experience on a TVD-enabled system.

We choose OKL4 as underlying security and virtualiza-
tion layer because it is a commercially available separation
kernel that provides isolation of execution environments for
two types of entities: Native applications and guest oper-
ating systems. As it is based on a microkernel architec-
ture, OKL4 has a very small code base, which allows one
to verify its correctness more easily than complex commod-
ity operating systems [19]. In addition, the virtualization
support of OKL4 allows execution of (several) full Android
virtual machines on a single device. Android, being a popu-
lar smartphone OS, can run various user applications. Our
system remains compatible with existing and future Android
applications and does not impose extra efforts for software
developers.

2. BACKGROUND

In this section we provide background information on the
TVD concept, and summarize the existing security features
of OKL4 that we use in our implementation.

2.1 Trusted Virtual Domain (TVD)

The concept of TVDs was introduced by researchers from
IBM [16, 7, 18], and has since been extended and refined by
a number of other works, e.g. [9, 3, 8]. The main goal of the

TVD concept is to execute workloads of different domains
in isolated computing environments.

A Trusted Virtual Domain (TVD) is a coalition of mutu-
ally trusting members, usually virtual machines. The TVD
policy is a set of rules that state security requirements a
TVD member must satisfy in order to be accepted as a
TVD member (e.g., integrity measurements of the virtual
machines and their software components). Members of a
TVD are assigned a security label that identifies the TVD,
which is also referred to as the “color” of the TVD. Basi-
cally, the TVD concept enforces a simple security model [2]:
Communication between two components is allowed if and
only if they share the same color.

From a logical point of view, TVDs are isolated (virtual)
computer networks. However, their physical deployment can
span over several computing platforms. On each platform,
a trusted virtualization layer enforces the central TVD poli-
cies and provides the isolated execution environments for the
TVD members. Figure 1 illustrates the logical and physical
view of TVDs. As shown in Figure 1, the TVD infrastruc-
ture also provides separate virtual networks that are oper-
ated over one physical network, but isolated from each other
(e.g., via encryption).

TVD Logical View

P ~ T “gre;n"\ N ~ TVD blue” > <
\ \
/ VM1 —— VM4 \ / \
/ /

\ ! \ !
\ / \ /
N VM6 , N ,
~ i ~ i

TVD Physical View

I I I

| Trusted Virtualization Layer | Trusted Virtualization Layer
T T T T

(l 1 + ¢ 1 1)

Virtual networks tunneled through physical network

| Trusted Virtualization Layer

Figure 1: Logical and physical view of Trusted Vir-
tual Domains (TVDs).

But the TVD concept goes beyond isolated execution and
virtual networks. One important aspect is the information
flow control. For instance, a strict TVD policy requires that
all data belonging to a TVD must remain in that TVD. As
a result, the TVD infrastructure ensures that data is au-
tomatically encrypted wherever it is stored or transmitted,
including external storage devices like flash memory.

The TVD policy is configured centrally and enforced lo-
cally. The central management component is called T'VD
Master, which stores the TVD policy and controls admis-
sion of other physical platforms to the TVD infrastructure.
On each platform, a TVD Prozy is created for each TVD,
which is a local copy of the TVD Master and is responsi-
ble for admission of the VMs to the corresponding TVD.
The TVD Proxy configures the local security services of a
platform to realize the TVD policy enforcement.

Existing works on the realization of TVDs mainly have
concentrated on data centers [3, 2, 8, 10] and desktop com-

puters [14, 22]. Commercial TVD solutions are becoming
available, e.g., Turaya'. However, the feasibility of the TVD
concept for mobile platforms has not been investigated yet.

2.2 OKL4 Microvisor

The OKL4 Microvisor provides virtualization and com-
partmentalization in embedded system development and acts
as a manager for hardware resources. It offers hardware ab-
straction (virtual CPUs, virtual MMU) and virtual device
abstraction (virtual interrupts). The term Microvisor is a
composition of the words microkernel and hypervisor and
reflects that both technologies apply to OKL4 [17].

OKL4 builds on the top of HyperCell™-Technology and
maintains isolated execution environments, so-called cells,
that can run native applications or guest operating systems
such as Android, Linux, and Symbian. OKL4 provides re-
source management, fast inter-process communication (IPC)
among cells and enforces process isolation and mandatory
access control on IPC calls based on capabilities — security
tokens that protect access to protected resources.

Each cell is assigned a specific kernel memory pool and a
set of physical memory address ranges (pre-defined by the
system administrator). OKL4 ensures that address spaces of
different cells are isolated from each other. Communication
between cells is performed via IPC, which is the only means
by which cells are allowed to communicate. The system ad-
ministrator defines for each cell the available IPC channels,
and specifies capabilities which other cells must possess in
order to communicate over this channel. Note that the ca-
pabilities of each cell are defined once at system startup and
cannot be changed afterwards.

OKL4 relies on a minimal trusted computing base (TCB)
and has a small memory footprint.

3. ARCHITECTURE

Our TVD architecture is depicted in Figure 2. It includes
a virtualization layer and isolated execution environments,
so-called compartments, that can run guest operating sys-
tems or native applications. The virtualization layer pro-
vides process and memory management, interrupts, and de-
vice drivers. Further, it enforces isolation between execution
environments and ensures that pre-defined communication
policies between isolated partitions are applied. Our archi-
tecture contains compartments of two types: (1) TVD com-
partments that are assigned to a TVD and typically run
a guest operating system such as para-virtualized Android,
and (2) system compartments that do not belong to any
TVD but provide security services to the rest of the system.
The latter include a trusted graphical user interface system
(Secure GUI), an attestation service, and a Mobile Trusted
Module (MTM) [25].

The virtualization layer, separated execution environments
and system services described above are similar to building
blocks of Trusted Mobile Desktop (TMD) [13] — an architec-
ture that uses virtualization to separate execution environ-
ment of the mobile platform into trusted and untrusted iso-
lated worlds (e.g., to allow separation of private and corpo-
rate assets when a corporate smartphone is in use for both,
business and private needs). We use the TMD architecture
as basis for our solution. In addition, our architecture in-

!Developed by Sirrix security technologies http://www.
sirrix.com

cludes TVD-specific components: TVD Proxy, TVD Master
and TVD Policy. The TVD Master acts as a central service
that manages the TVD infrastructure and serves as place
where administrators can specify the TVD Policy. TVD
Proxy is an additional client security service, which deploys
the TVD Policy on the platform and is responsible for plat-
form configuration and local policy enforcement. The TVD
Policy is delivered from TVD Master to TVD Proxy via a
trusted channel [15, 1].

3.1 Building Blocks

In the following we provide a more detailed description on
the building blocks of our architecture.

Virtualization layer.

As our virtualization layer we chose the OKL4 Microvi-
sor [17] (in contrast to TMD [13] which has been build on
top of PikeOS [5]), because it is available under open source
license for research and educational purposes. OKL4 accu-
rately fits into the TVD architecture since it provides high-
performance inter-process communication (IPC) among dif-
ferent cells and enforces process isolation and mandatory
access control on IPC calls based on capabilities.

Mobile Trusted Module.

The TCG Mobile Trusted Module (MTM) [25] is a secu-
rity extension for embedded devices, a lightweight counter-
part of the Trusted Platform Module (TPM) [26], which is
used for PCs. Similarly to TPM, MTM provides means to
record platform configuration in extendable Platform Con-
figuration Registers (PCRs). We use a software MTM in our
architecture (i) to establish trusted channels, (ii) to support
remote attestation, and (iii) to manage cryptographic keys.

Attestation Service.

The Attestation Service provides the remote attestation
functionality that allows a remote party to verify if a plat-
form configuration is in a trusted state. It attests the secu-
rity kernel and application-level compartments and is used in
a process of a trusted channel establishment between TVD
Proxy and TVD Master.

Compartment Manager.

The compartment manager is an application that provides
a graphical user interface for local compartment manage-
ment. It delegates the commands received from the user
to be executed by the TVD Proxy. Further, it shows the
graphical output of the started command and its result.

Secure GUL

Any user input/output on the device goes through a se-
cure GUI. The Secure GUI catches all user inputs and offers
an unique framebuffer for graphical outputs of each com-
partment. It includes a trusted bar — a reserved area on the
screen that shows information about the compartment the
user is currently interacting with. This includes the name
and the color of the compartment, i.e., its TVD member-
ship. Further, it ensures that the user’s input is delivered to
the indicated compartment, and not to any other one.

TVD Compartments.
Each TVD compartment runs a single guest operating sys-

http://www.sirrix.com
http://www.sirrix.com

OK:Android OK:Android

TVD Orange

OK:Android

User Mode TVD Master
System | (Blue)
Services |- TVD Policy
Attestation . Blue

Service ! A
Compartment |
Manager
=
2
(=g
3
2
oy
TVD g
Proxy a
v
TVD Master
(Orange)
TVD Policy
Orange

Figure 2: Architecture Overview

tem. For instance, the platform depicted in Figure 2 has
three TVD compartments that run Android OSes. Each
Android instance consists of a Linux kernel, the middleware
and an application layer. The Android Linux kernel is mod-
ified with the OK:Android [24] package, which provides mi-
crokernel support for Android. Each TVD compartment is
assigned to a domain. For instance, in Figure 2, two TVD
compartments are assigned to TVD Blue and one compart-
ment belongs to TVD Orange. Compartments from a single
domain can freely communicate, while communication be-
tween compartments of different domains is prohibited.

TVD Master.

TVD Master is a remote TVD administrator. Each TVD
has its own TVD Master, which is responsible for defining a
TVD security policy.

TVD Proxy.

The TVD Proxy is responsible for establishing the trusted
channel to a TVD Master and TVD Policy delivery to a local
platform. When several domains are deployed on the plat-
form (e.g., TVD Blue and TVD Orange), TVD Proxy com-
municates with the corresponding TVD Masters, receives
the TVD Policies, and maps these policies to an OKL4 con-
figuration.

TVD Policy.

The TVD Policy specifies the TVD compartments to be
installed on the platform and the available resources on the
device to be assigned to compartments. Further, inter-TVD
communication may also be specified in the policy. By
default, communication between different TVDs is not al-
lowed. We elaborate on the TVD Policy in more detail in
Section 3.3.

3.2 Design Challenges

One of the challenges we have to deal with is the static
configuration of OKL4. The number of cells on the plat-
form, IPC channels among them, and capabilities to control
access to these channels are specified by the OKL4 config-

uration. This configuration cannot be changed at runtime,
but can be updated only upon reboot. The challenge here is
to build a usable system despite this static limitation. The
straightforward approach would be to change OKL4 or use
another system, but we want to stick with a commercially
available and deployed system to provide a solution that has
more chance of adoption in practice. Hence, our objective
is to build a system that lives with these limitations but is
still efficient and usable enough.

Hence, the static nature of OKL4 influences our design de-
cisions on the integration and enforcement of TVD Policies.
We transform the TVD Policy into an OKL4 Microvisor con-
figuration, which defines the system layout and access rules
(capabilities). Next, a new configuration is applied to build
a new executable OKL4 system image. In contrast to ex-
isting TVD solutions for desktop platforms [10, 9, 22], our
TVD Policies can be updated only by means of building and
installing a new system image on the platform.

Further, we are not able to reuse TVD Policies that are
used for desktop systems due to the different types of re-
sources in both environments. In a desktop computer en-
vironment, the typical resources are logical networks or file
disks. In an embedded environment, especially OKL4 Mi-
crovisor, the focus is on more profound resources like inter-
process communication channels, interrupt handling or ini-
tial RAM file systems and is bound to the targeted platform.
In addition, mobile systems have static resources like phys-
ical devices or defined physical/virtual memory pools that
are platform-dependent.

Finally, TVD deployment on the platform typically in-
volves execution of two protocols [23, 10]: First, the TVD
Deploy runs to verify the trustworthiness of the platform,
and second, TVD Join protocol is executed by the TVD
Proxy to determine if local virtual machines can participate
in the TVD. However, this approach is not applicable to
the OKL4 architecture due to its static nature. Since join-
ing a TVD by a compartment would require changes in the
underlying system configuration, this operation cannot be
performed at runtime. Thus, we merge the protocols T'VD
Deploy and TVD Join into a single protocol.

TVD Layout

l I

[l

‘ Target Platform | ‘ Resources | ‘Trusted Systems|

‘ Systems | Inter-Comm.

l

L]

‘ Used Resources | ‘ Used Resources |

Figure 3: Conceptual structure of an OKL4 oriented TVD Policy

3.3 TVD Policy

The TVD Policy is expressed in XML language. The pol-
icy structure is represented in Figure 3. The figure shows a
tree view of the XML structure and contains five groups of
elements which we describe in the following:

e Target Platform: This group specifies the platform the
TVD Policy is defined for. Note, that due to platform-
dependent properties such as available hardware but-
tons and corresponding interrupt interfaces, the mobile
version of the TVD Policy is platform dependent.

e Trusted Systems: This group of elements describes a
trusted computing base (TCB) of the platform. Partic-
ularly, these include system services (depicted in Fig-
ure 2) and the OKL4 kernel.

e Systems: This group represents the set of TVD Com-
partments. The OKL4-based platform supports com-
partments that run either native applications, or guest
operating systems like Android.

e Resources: This group specifies resources on the de-
vice. These are mainly IPC channels to trusted sys-
tems or initial ramdisk files for systems that can be
assigned to compartments.

e Inter-Comm: This group defines inter-TVD communi-
cation rules. It specifies IPC channels between systems
belonging to different TVDs. Elements of this group
have to be synchronized in TVD Policies of all corre-
sponding TVDs.

In addition, Trusted Systems and Systems may have child
elements called "Used Resources”. They assign allocated
resources from the Resources group to the system elements.

4. SYSTEM MANAGEMENT

In this section we describe the mapping of the TVD Pol-
icy to the OKL4 configuration and the realization of the
commands Install Compartment and Delete Compartment.

4.1 TVD Policy Mapping

In order to map multiple TVD Policies to a single OKL4
configuration, our system has to provide an n : 1 mapping
technique. We rely on the fact that the TVD Policy and
the OKL4 configuration share several characteristics, in par-
ticular, we exploit that both organize their elements (e.g.,
resources and virtual machines) into groups. The idea is
to select elements of these groups and put them into sets,
which are related to TVD policies. Newly formed sets are
merged with mapping rules into one output set (OKL4 con-
figuration), which contains OKL4 related elements.

The general workflow for the policy mapping is as follows
(see Figure 4): We receive TVD policies as input and extract
elements (e.g., resources, trusted systems) from the policy
(step 1); then we merge them to output cells (step 2), and
finally we map them into a corresponding OKL4 configura-
tion (step 3).

In the Eztract phase our system processes the TVD poli-
cies and parses the individual XML fields. In particular,
it extracts the systems the user selected, and includes re-
sources associated with the selected systems. The trusted
systems are identical for all TVD policies. Extracted infor-
mation is provided as the input for the model to generate
sets. The set generation is performed as follows: First, the
selected systems are associated with sets, based on the cor-
responding TVD Policy. Second, the trusted systems are
associated with one dedicated set. Finally, every system
and the trusted systems are associated with a resource set.

The Merge phase is responsible to copy previously gener-
ated sets into one output set, denoted as Cells. This process
is performed under the following mapping rules:

1. For each element of all System Sets a new element in
the set Cells is created.

2. For each Trusted System element one element in the
set Cells is built.

3. Each associated Resource set is copied to an E-Resource
Set and is linked to the corresponding Cells element.

4. For all Cells elements that belong to the same TVD,
add an element from type “IPC” to the E-Resource Sets
associated with these Cells elements. (This essentially
creates IPC channels between members of the same
TVD). This is repeated for all TVDs.

5. If an element in the set Inter-Comm exists, an element
of type “IPC” is added to the associated E-Resource
Sets of the Cells that map to the Inter-Comm element.

In the Write phase, we create the OKL4 configuration file
in XML format, based on the Cells set and E-Resource sets.

To automate system image installations, we have devel-
oped an algorithm based on the above model. Listing 4.1
shows briefly the algorithm for the mapping. The inputs are
n TVD policies, the hardware configuration of the targeted
platform, a list of necessary hardware resources for a cell,
and the selection of systems. We require that the TVD poli-
cies are specified for the same hardware, that the trusted
system specification is identical, and that the user’s selec-
tion of compartments is defined in the TVD policies. The
algorithm starts with the set building for the trusted sys-
tems. Next, the set of systems is built, based on the user’s
selection. Both sets then are transformed into the cell Set

I,

1. Extract

: Trusted
-\ Systems
; Z

T

Resources

OKL4
Configuration

. 3. Write
—

E-Resource)
Sets .

Figure 4: Policy mapping from TVD to OKL4

Algorithm 4.1 Merge TVD Policies to OKL4
Input: TVD policies, HW-Config, List-HW-Cell, selection
Ensure: Targeted platform is identical
Ensure: Trusted systems are identical
Ensure: selection is in TVD Policies
1: Build set Inter-Comm. for all TVD policies
2: Build set Trusted Systems and corresponding Resource
Sets
: if Systems of selection are in one TVD policy then

o

4: Build Systems set and the Resource Sets for each Sys-
tems element
5: else

6: Build for each TVD a Systems set based on selection.
For each element assign a Resource Set.

7: end if

8: for all Elements in Trusted Systems do

9: Create element in Cells and the E-Resource set.
10: end for

11: for all Elements of Systems sets do

12: Create element in Cells for current Systems set’s ele-

ment
13: for Resources sets do
14: Create E-Resource Sets and link them to the corre-
sponding element on Cells
15: if Element exists in Inter-Comm. set then
16: Insert element into the E-Resources Set of the
current Cells element
17: end if
18: end for
19: end for

20: Set IPC channels for each element in Cells of one TVD
to another Cells element of the same TVD

Output: Microvisor Configuration = (HW-Config, micro-

kernel resources, cell entries for all elements of C)

C'. After this, the configuration file can be created. Firstly,
the machine configuration (HW-Config) is included. Next,
the microkernel resources like physical and virtual pool for
the microkernel itself are written. Based on the computed
memory addresses the physical pools for the cells are written
as well. Based on the set C' the cells are written into the
configuration file.

4.2 Management Commands

The typical TVD management includes execution of such
commands as install/remove/update a TVD compartment
or install/remove a TVD. As we discussed in Section 3.2,
due to the static property of the OKL4 configuration, these

commands can be realized only via an update of OKL4 im-
age configuration and building and installation of a complete
new OKL4 system image on the mobile device. In the fol-
lowing, we provide description of two alternative solutions
to perform this task. In the first scenario, the image is built
on the mobile platform locally. However, this approach has
some drawbacks as the compilation of a whole system im-
age is a computationally expensive task. This would require
significant time and, more importantly, would have nega-
tive impact on the battery life of a mobile device. Thus, we
also provide an alternative solution, where the task to build
the OKL4 image is delegated to a TVD Master. Generally,
TVD Masters of different TVDs do not trust each other.
So one TVD Master cannot trust another TVD Master to
build a new image correctly. However, in use cases where all
TVDs are deployed on the device are controlled by a single
administrator, e.g., in case when all TVDs belong to a sin-
gle company (but, e.g., handle information of different trust
levels), the task of building of a new image can be delegated
to a company server which represents a kind of multi-TVD
Master and handles TVD Policies of different domains.

4.2.1 Image Building on Mobile Device

Figure 5 gives an overview of the general procedure of
the installation of a new OKL4 image by the TVD Proxy.
The user communicates with a Compartment Manager and
sends a command to be executed (e.g., a command Install
compartment, as depicted in Figure 5).

The Compartment Manager passes user request to the
TVD Proxy, which connects via the trusted channel to the
TVD Master and downloads new compartment data. After
the successful download, the TVD Proxy creates a new Mi-
crovisor configuration, builds a new OKL4 image, measures
it (creates reference values for subsequent measurements)
and stores the image on an SD card. Next, device is re-
booted. During reboot, the bootloader recognizes the new
image on the SD card and loads it. When the new image is
successfully loaded, the old image is deleted.

4.2.2 Image Building by TVD Master

The procedure of building the OKL4 image by the TVD
Master and its delivery to the platform is shown in Figure 6.
The first part of the protocol is similar to the previous one:
The procedure is started by the user requiring installation of
a new compartment, then user request is transferred to the
TVD Proxy, and TVD Proxy tunnels the request to TVD
Master via the trusted channel.

However, the second part of the protocol is different: The
TVD Master does not transfer new compartment data to

install
Compartment

&

User

*Mobile Device . TVD Master
" request Comp. file..
Compartment request | TvD |. Server
: Manager Proxy new Comp. file
v
-7)
o —.
7 7/
.................... s We o o 2 a n » e a e m e eammeema.
pr- 4
7 7/
F 7

- store Comp. file
- build new OKL4 configuration based

on actual OKL4 config, new Comp. file |

and TVD policies

- build new OKL4 image
- measure image
pzreboot _____ ________

install
Compartment -

&

User

Mobile Device ' TVD Master
request
Compartment request [TVD] Server
MEmEEET Proxy |. jew okL4 image . 7
7 , —_— 1
_ 7 - /

- store new OKL4 image

|- measure image
- reboot

! 1- get actual OKL4 configuration |
! 1- build new OKL4 configuration |
| based on new Comp. and TVD policies !
1- build new OKL4 image !

Figure 6: System Installation: OKL4 Image built by TVD Master

the TVD Proxy, but builds the new OKL4 image itself. It
is assumed that TVD Master maintains TVD Policies of all
domains deployed on the device, and also knows the current
device configuration. Thus, it possesses all the necessary
information for building a new OKL4 image. Then, the
whole image is transferred to the TVD Proxy via the trusted
channel. The TVD Proxy stores the image, measures it (to
create new reference values) and reboots the system. The
TVD Master can verify correctness of the new image via the
remote attestation protocol.

In both scenarios TVD Proxy and TVD Master commu-
nicate via the trusted channel. We integrated a trusted
channel establishment protocol proposed in [10] into our de-
sign. Note, in contrast to desktop solutions, a mobile de-
vice is not necessarily connected to the network for a long
time. This implies that the trusted channel connection can
be terminated before data is successfully transmitted from
the TVD Master to the TVD Proxy. When connection is
re-established, file transmission should start from the be-
ginning, if no support is provided for resuming of the pre-
viously terminated session. In this case, the approach of
building OKL4 images on the device might be preferable.
It would require only to transmit smaller amount of data,
particularly, a compartment file vs. a whole OKL4 image.

S. IMPLEMENTATION

In the following, we describe implementation of particular
building blocks of our architecture. First, we elaborate on
OKL4 development techniques, next, shortly describe the

implementation of security services, and finally describe our
implementation of the Policy Mapper tool.

5.1 OKL4 Development

For the development on the OKL4 Microvisor platform,
we used the Open Kernel Labs SDK. It includes all neces-
sary binaries of the OKL4 microkernel and includes a tool
(called ok tool) to create bootable images. This tool takes a
configuration file in XML format as input. This configura-
tion file includes important definitions of the system like cell
configurations or allocated capabilities. The ok tool merges
this configuration with the corresponding binaries for each
cell into a single bootable system image. This image can be
booted on any supported hardware platform. The microker-
nel starts all specified cells and it is not possible to start or
stop cells at runtime. Further, it is not possible to change
the microkernel configuration at runtime.

The OKL4 configuration file (also called system configu-
ration) consists of three parts. The first part contains the
elements that are used to specify resources in the system.
The second part is an inclusion of the hardware configura-
tion file (also in XML format), which defines various aspects
of the targeted platform like CPU, board, virtual and phys-
ical memory, and physical devices. The third part contains
the elements describing the OKL4 cells and their assigned
resources or capabilities, e.g., for IPC channels.

5.2 Security Services

We have implemented security services partly as native

applications that run directly on the top of OKL4 and partly
as Linux applications. Particularly, a Mobile Trusted Mod-
ule (MTM), the TVD Proxy, and an Attestation Service
are implemented as Linux applications that run in a small
Linux OS instance, while Compartment Manager and Secure
GUI are native C applications which run each in their own
OKIL4 cell. Communication among security services resid-
ing in different cells is performed via IPC calls. We reused
the implementation of the software MTM and Attestation
Service from TMD [13].

5.3 Policy Mapper

The Policy Mapper is implemented as a part of a TVD
Proxy security service. It maps the TVD Policy to a valid
OKL4 configuration and allows to automate the image build-
ing process. The tool realizes a mapping model presented in
Section 4. The algorithm is written in Java to offer platform
independence. Hence, it can be run on the mobile device or
by a TVD Master. We structured the Policy Mapper in
two packages called model and policymapper. The package
model contains eight classes that represent the model in Fig-
ure 4. The package policymapper includes two classes that
implement the mapping algorithm described in Section 4.1.

6. EVALUATION

In this section we evaluate the performance of our proto-
type implementation and discuss its current limitations.

6.1 Performance

We measured the performance for building the image on
the client and the TVD Master. The client system is a
Beaglebord (rev. C4)? and for the TVD Master we used a
Dell OptiPlex 980. The Beagleboard is based on the com-
mon chip set TT OMAP3530 and the ARM Cortex-A8 CPU,
which is a part of various available smartphones like Nokia
N900 or Motorola Milestone. The measurement includes the
following steps: (i) running the Policy Mapper tool to create
OKL4 configuration file and (ii) building the system image.
We tested both approaches as described in Section 4.2. We
repeated the test 25 times on both systems.

The input for the Policy Mapper tool is a native applica-
tion as a TVD compartment and a trusted system. The
native application is a C program and has a file size of
377 kByte. The trusted system is a small Linux VM and
contains the Policy Mapper tool and is 18 MByte in size,
representing the TVD Proxy. For both systems we calcu-
lated the maximal theoretical time for downloading the nec-
essary files by an Enhanced Data Rates for GSM Evolution
(EDGE) connection, which is a technology to improve data
transfer rates of standard GSM connection and is available
in more than 170 countries. The test does not include the
time that is needed for rebooting the device and running the
remote attestation protocol.

Table 1 shows the performance results for building the
image by the TVD Proxy. The overall time for installation
of a new OKL4 image is 1130,51 seconds. As it can be seen,
the most time is spent in downloading the compartment files
and in compiling the new OKL4 image.

The performance results for the case when OKL4 image is
built by the TVD Master are shown in Table 2. Generally,
this approach is more time consuming, namely the overall

2See: http://www.beagleboard.org

task time required
download (EDGE) 720 sec.
create configuration 0,73 sec.
build image 409,78 sec.
overall 1130,51 sec.

Table 1: Performance results for OKL4 system in-
stallation by TVD Proxy

required time is 2115,74 seconds. This is due to the fact
that the download of the complete OKL4 image takes more
time than the download of compartment files. With a faster
communication channel, e.g. UMTS or WiFi, the overall
performance can be improved.

task time required
download (EDGE) 2100 sec.
create configuration 0,04 sec.
build image 15,70 sec.
overall 2115,74 sec.

Table 2: Performance results for OKL4 system in-
stallation by TVD Master

Beside the time consumption, another important criterion
is the power that is consumed to download the larger files.
While running these tests, we noticed that 99% of computing
power and just 1,6% of RAM were used. This feature was
noticed for both tetsted use-cases. Better performance could
be achieved by faster mobile chips like the Snapdragon or
the dual core processor Cortex A9 or by optimization of the
OKLabs tool, respectively the development of a tool that is
designed for usage on mobile devices.

6.2 Limitations

The OKL4 Microvisor properties limit usability of the
OKL4-based implementation of the presented architecture.
It is not possible to add or delete new compartments during
runtime, rather we have to perform it at install time. This
means that all TVD commands like Install Compartment or
TVD Policy Update involve the deletion of the whole system
image. Hence, backup mechanism are necessary to preserve
user data. Further, it is not possible to start or stop com-
partments on demand. All compartments are started on
device upon boot up. This requires power supply and lim-
its the realization of the TVD use cases. Lastly, building
the system image costs a lot of time and computing power.
This restricts the usability of the system. An optimization
of the software that builds OKL4 images, or faster CPUs
like Snapdragon would clearly improve the performance.

7. RELATED WORK

Trusted Mobile Desktop (TMD) [13] is a research pro-
totype that uses virtualization to separate execution envi-
ronments of a mobile platform into trusted and untrusted
worlds. The implementation of TMD uses PikeOS [5], a mi-
crokernel derived from the 1.4 [21] microkernel family, which
also supports virtualization. While the TMD provides basic
functionality necessary to build a TVD infrastructure (i.e.,
isolated execution environments, and a secure GUI), a full

http://www.beagleboard.org

TVD realization is not provided. In contrast, our solution
includes the TVD-specific policy enforcement and automatic
configuration based on a policy deployment from a central
management server. Instead of PikeOS, our implementation
uses OKL4 [20], a microkernel-based hypervisor. OKL4 is
derived from seL4 [19]. Though this does not automatically
imply that OKL4 has the same security properties as sel.4,
we believe that a comparable effort would only be needed to
verify the correctness and security of its derivations.

TrustDroid [6] is a very recent security extension for An-
droid that targets the same security goals as TMD, however,
it does not rely on a virtualization approach to achieve them.
TrustDroid extends Android OS to provide isolation at dif-
ferent layers of the Android software stack: Android mid-
dleware and the Linux kernel. This approach is lightweight,
as it does not require to run a full operating system for each
domain, and also scalable, as resources required for each new
domain to be created are very modest. However, it has a
large TCB that includes Android middleware and the Linux
kernel. Although static integrity of TCB can be guaranteed
by means of secure boot, the TCB is still vulnerable to run-
time attacks and thus can be compromised, e.g., though the
kernel-level attacks that exploit vulnerabilities of the under-
lying Linux kernel®.

Enterproid Devide [12] is also focusing on the separation
of enterprise and private data on Android. It uses different
profiles on an Android device to control the access to differ-
ently classified data. Moreover, each profile contains its own
set of applications, and information flow between different
profiles is not allowed. Since Devide is still in beta phase,
it is unclear how the profiling is technically solved. In con-
trast of modifying Android, we enforce the isolation policy
for TVDs on a lower level, i.e., at the hypervisor, and we
run several instances of Android on the same device.

The Enterprise Mobility Management (EMM) [11] is a
software solution for enterprises that provides data encryp-
tion, secure communication to the enterprise’s network and
management for mobile devices. EMM allows to define a
policy that states which applications can be installed on a
device and which are blacklisted. However, this approach
just targets the configuration and management of mobile
devices. It is not possible to prevent the leakage of infor-
mation and to separate the access to differently classified
data.

8. CONCLUSION

In this paper we have presented a TVD solution for mobile
devices, based on the OKL4 microkernel hypervisor. Our
implementation extends an existing Trusted Mobile Desk-
top architecture with TVD components, in particular with
a TVD Proxy component that manages the TVD policy en-
forcement locally on a device and with a policy mapping
tool that maps TVD policies to the static OKL4 configura-
tion. Despite the static nature of OKL4 we provide a work-
ing end-user system for separating private and enterprise
domains for data and applications on smartphones. How-
ever, we also showed the limitations of using OKL4 in such
systems. Future work includes the integration of backup
strategies for user data and the optimization of the system
building software.

3Current reports show that Android’s underlying Linux ker-
nel suffers from various (precisely 88) bugs [4]

9.
[1]

2]

3]

[5]

[6]

[9]

(10]

(11]

(12]

(13]

REFERENCES

F. Armknecht, Y. Gasmi, A. R. Sadeghi, P. Stewin,
M. Unger, G. Ramunno, and D. Vernizzi. An efficient
implementation of trusted channels based on
OpenSSL. In STC ’08: Proceedings of the 8rd ACM
workshop on Scalable trusted computing, pages 41-50,
New York, NY, USA, 2008. ACM.

S. Berger, R. Caceres, K. Goldman, D. Pendarakis,
R. Perez, J. R. Rao, E. Rom, R. Sailer,

W. Schildhauer, D. Srinivasan, S. Tal, and E. Valdez.
Security for the cloud infrastructure: Trusted virtual
data center implementation. IBM Journal of Research
and Development, 53(4):6:1-6:12, July-August 2009.
S. Berger, R. Céaceres, D. Pendarakis, R. Sailer,

E. Valdez, R. Perez, W. Schildhauer, and

D. Srinivasan. TVDc: managing security in the
trusted virtual datacenter. SIGOPS Oper. Syst. Rev.,
42(1):40-47, 2008.

M. Broersma. Serious security bugs found in Android
kernel. http://www.eweekeurope.co.uk/news/
serious-security-bugs-found-in-android-kernel-11040,
Nov. 2010.

J. Brygier, R. Fuchsen, and H. Blasum. PikeOS: Safe
and secure virtualization in a separation microkernel.
Technical report, SYSGO, September 2009.

S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R.
Sadeghi, and B. Shastry. Scalable and lightweight
domain isolation on Android. In SPSM’11:
Proceedings of the 2011 ACM workshop on Security
and Privacy in Smartphones and Mobile Devices, 2011.
A. Bussani, J. L. Griffin, B. Jansen, K. Julisch,

G. Karjoth, H. Maruyama, M. Nakamura, R. Perez,
M. Schunter, A. Tanner, L. V. Doorn, E. A. V.
Herreweghen, M. Waidner, and S. Yoshihama. Trusted
Virtual Domains: Secure foundations for business and
IT services. Technical Report RC23792, IBM
Research, November 2005.

S. Cabuk, C. I. Dalton, K. Eriksson, D. Kuhlmann,
H. G. V. Ramasamy, G. Ramunno, A.-R. Sadeghi,

M. Schunter, and C. Stiible. Towards automated
security policy enforcement in multi-tenant virtual
data centers. Journal of Computer Security,
18(1):89-121, 2010.

S. Cabuk, C. I. Dalton, H. Ramasamy, and

M. Schunter. Towards automated provisioning of
secure virtualized networks. In CCS ’07: Proceedings
of the 14th ACM Conference on Computer and
Communications Security, pages 235-245. ACM, 2007.
L. Catuogno, A. Dmitrienko, K. Eriksson,

D. Kuhlmann, G. Ramunno, A.-R. Sadeghi, S. Schulz,
M. Schunter, M. Winandy, and J. Zhan. Trusted
virtual domains — design, implementation and lessons
learned. In Trusted Systems, First International
Conference, INTRUST 2009, volume 6163/2010 of
Lecture Notes in Computer Science, pages 156—179.
Springer, 2010.

T. Digital. Enterprise Mobility Management.
http://trustdigital.com/.

Enterproid. Enterproid Devide.
http://www.enterproid.com.

Florian Feldmann Utz Gnaida, Christian Stiible, and
Marcel Selhorst. Towards a trusted mobile desktop. In

http://www.eweekeurope.co.uk/news/serious-security-bugs-found-in-android-kernel-11040
http://www.eweekeurope.co.uk/news/serious-security-bugs-found-in-android-kernel-11040
http://trustdigital.com/
http://www.enterproid.com

[17]

[18]

TRUST2010: 3rd International Conference on Trust
and Trustworthy Computing, 2010.

Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger,

M. Winandy, R. Husseiki, and C. Stiible. Flexible and
secure enterprise rights management based on trusted
virtual domains. In STC ’08: Proceedings of the 3rd
ACM workshop on Scalable trusted computing, pages
71-80. ACM, 2008.

K. Goldman, R. Perez, and R. Sailer. Linking remote
attestation to secure tunnel endpoints. In STC ’06:
Proceedings of the First ACM Workshop on Scalable
Trusted Computing, pages 21-24, 2006.

J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L.. van
Doorn, and R. Céceres. Trusted Virtual Domains:
Toward secure distributed services. In Proceedings of
the 1st IEEE Workshop on Hot Topics in System
Dependability (HotDep’05), June 2005.

G. Heiser and B. Leslie. The OKL4 microvisor:
convergence point of microkernels and hypervisors. In
Proceedings of the first ACM asia-pacific workshop on
Workshop on systems, APSys '10, pages 19-24, New
York, NY, USA, 2010. ACM.

Y. Katsuno, M. Kudo, P. Perez, and R. Sailer.
Towards Multi-Layer Trusted Virtual Domains. In The
Second Workshop on Advances in Trusted Computing
(WATC 2006 Fall), pages 133-138, Tokyo, Japan,
Nov. 2006. Japanese Ministry of Economy, Trade and
Industry (METT).

G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

S. Winwood. sel.4: Formal verification of an OS

10

20]

(21]

(22]

23]

(24]

[25]

(26]

kernel. In SOSP ’09: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems
Principles, pages 207-220. ACM, 2009.

O. K. Labs. OKL4 Microvisor. http:
//www.ok-1labs.com/products/okl4-microvisor.

J. Liedtke. On micro-kernel construction. In SOSP ’95:
Proceedings of the 15th ACM Symposium on Operating
System Principles, pages 237-250. ACM, 1995.

H. Lohr, T. Poppelmann, J. Rave, M. Steegmanns,
and M. Winandy. Trusted virtual domains on
OpenSolaris: Usable secure desktop environments. In
STC ’10: Proceedings of the 5th Annual Workshop on
Scalable Trusted Computing, pages 91-96. ACM, 2010.
H. Lohr, A.-R. Sadeghi, C. Vishik, and M. Winandy.
Trusted privacy domains — challenges for trusted
computing in privacy-protecting information sharing.
In Information Security Practice and Ezperience, 5th
International Conference, ISPEC 2009, volume 5451
of Lecture Notes in Computer Science, pages 396—407.
Springer, 2009.

J. Matthews. Android Migration at the Speed of
Light. http://www.ok-labs.com/_assets/image_
library/Android%20Migration?20at%20the%
20Speed%200f%20Light . pdf, June 2009.

Trusted Computing Group. Mobile Trusted Module
(MTM) Specification. Version 1.0 Revision 6, 26 June
2008.

Trusted Computing Group. Trusted Platform Module
(TPM) Main Specification. Version 1.2 Revision 103, 9
July 2007.

http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/_assets/image_library/Android%20Migration%20at%20the%20Speed%20of%20Light.pdf
http://www.ok-labs.com/_assets/image_library/Android%20Migration%20at%20the%20Speed%20of%20Light.pdf
http://www.ok-labs.com/_assets/image_library/Android%20Migration%20at%20the%20Speed%20of%20Light.pdf

	Introduction
	Background
	Trusted Virtual Domain (TVD)
	OKL4 Microvisor

	Architecture
	Building Blocks
	Design Challenges
	TVD Policy

	System Management
	TVD Policy Mapping
	Management Commands
	Image Building on Mobile Device
	Image Building by TVD Master

	Implementation
	OKL4 Development
	Security Services
	Policy Mapper

	Evaluation
	Performance
	Limitations

	Related Work
	Conclusion
	References

