
A Trusted Versioning File System for Passive Mobile Storage Devices

Luigi Catuognoa, Hans Löhrb,c, Marcel Winandyb, Ahmad-Reza Sadeghid

aDipartimento di Informatica
Università degli Studi di Salerno

Via Ponte Don Melillo
I-84084 Fisciano SA - Italy

bSystem Security Lab
Ruhr-University Bochum

Universitätsstraße 150
D-44801 Bochum - Germany

cNow working for
Robert Bosch GmbH, Corporate Research

D-70442 Stuttgart - Germany

dSystem Security Lab
Technical University Darmstadt

Mornewegstraße, 32
D-64293 Darmstadt - Germany

Abstract

Versioning file systems are useful in applications like post-intrusion file system analysis, or reliable file retention and
retrievability as required by legal regulations for sensitive data management. Secure versioning file systems provide
essential security functionalities such as data integrity, data confidentiality, access control, and verifiable audit trails.
However, these tools build on top of centralized data repositories operating within a trusted infrastructure. They often
fail to offer the same security properties when applied to repositories lying on decentralized, portable storage devices
like USB flash drives and memory chip cards. The reason is that portable storage devices are usually passive, i.e., they
cannot enforce any security policy on their own. Instead, they can be plugged in any (untrusted) platform which may
not correctly maintain or intentionally corrupt the versioning information on the device. However, we point out that
analogous concerns are also raised in those scenarios in which data repositories are hosted by outsourced cloud-based
storage services whose providers might not satisfy certain security requirements.

In this paper we present TVFS: a Trusted Versioning File System which stores data on untrusted storage devices.
TVFS has the following features: (1) file integrity and confidentiality; (2) trustworthy data retention and retrievability;
and (3) verifiable history of changes in a seamless interval of time. With TVFS any unauthorized data change or
corruption (possibly resulting from being connected to an untrusted platform) can be detected when it is connected to
a legitimate trusted platform again. We present a prototype implementation and discuss its performance and security
properties. We highlight that TVFS could fit those scenarios where different stakeholders concurrently access and update
shared data, such as financial and e-health multiparty services as well as civil protection application systems such as
hazardous waste tracking systems, where the ability to reliably keep track of documents history is a strong (or legally
enforced) requirement.

1. Introduction

Versioning file systems transparently retain different
versions of stored files and record the history of changes
made to each file over time. This kind of file systems
was originally introduced to allow users to maintain a file-
grained backup making available an accurate log of their

Email addresses: luicat@dia.unisa.it (Luigi Catuogno),
mail@hans-loehr.de (Hans Löhr), marcel.winandy@trust.rub.de
(Marcel Winandy), ahmad.sadeghi@trust.cased.de (Ahmad-Reza
Sadeghi)

work and possibly to recover their data after any wrongful
operation. Versioning file systems have several advantages
compared to conventional backup systems or application-
level revision control systems [1]. Versioning file systems
store locally the old data, so that users can autonomously
access their backups without the effort of the system ad-
ministrator; they operate independently from the type of
files and the applications; new versions of any file are cre-
ated automatically each time a data change occurs, instead
of requiring the user who modifies the file to explicitly cre-
ate a new version.

Preprint submitted to Elsevier May 20, 2013

These characteristics make versioning file systems suit-
able to several important applications, motivating renewed
interest in this subject. For example, running an oper-
ating system over a versioning file system, enables the
administrator to detect, and analyze the occurring data
changes in order to discover potential malicious activities
and, if any, provides the capability to recover the file sys-
tem to a safe state. Furthermore, versioning file systems
naturally fit those application scenarios where, due to re-
cently introduced regulations – e.g., Sarbanes-Oxley Act
(SOX), Health Insurance Portability and Accountability
Act (HIPAA) and the Federal Information Security Man-
agement Act (FISMA), – retention and availability of sen-
sitive data, as well as reliable information about their evo-
lution, are recommended or mandatory.

Therefore, newly introduced secure versioning file sys-
tems [2, 3, 4, 5] feature trustworthy data repositories which
guarantee confidentiality, integrity and availability for each
stored file version, according to the required security and
retention policies. In addition, any change made to the
stored files is recorded to accurate log files in order to
keep verifiable tracks of which data have been modified,
when and by whom.

Generally, these file systems provide a data repository
which is embedded within a trusted computing base that
ensures the file contents and meta-data are protected and
can be accessed only through a precise protocol and ac-
cording the configured security policy. Such repository can
be either implemented locally and managed by a trusted
operating system component, or can be hosted by a remote
centralized file server, and reachable through the network,
leveraging on network security facilities as communication
encryption and peers authentication.

However, we highlight that such tools cannot provide
equivalent guarantees if the data repository is implemented
on a Mobile Storage Device (MSD). Examples of MSDs
are USB memory sticks, transportable hard-disk drives,
and memory chip cards. MSDs have gained an impor-
tant role as means to easily transfer data across multiple
working locations and platforms, and to store and transfer
data among equipment of very different type, e.g., digital
cameras, printers, car or home media systems, and even
medical equipment. A typical usage scenario are medical
alert USB flash drives that store important medical in-
formation of users on the stick to be used in emergency
situations, such as accidents or natural disasters.

However, introducing the possibility of storing data on
MSDs raises serious security concerns. In general, the us-
age of passive mobile storage devices faces the challenges
of protecting the confidentiality of the stored data and
protecting the computing platforms they are attached to
from potential malware that may reside on the storage
devices. In particular, if used as versioning data reposi-
tory, mobile storage devices allow to perform unattended
changes to the stored files, i.e., bypassing the correct pro-
tocol and security policy enforcement. The reason is that
they are passive storage devices, they generally do not have

an implicit security mechanism built in. Hence, passive
MSDs are totally under the control of the platform they
are attached to. Moreover, standard encryption tools, even
when correctly executed on those computing platforms,
may solve the confidentiality requirements, but they usu-
ally lack support for maintaining versioning information
and audit trails on the storage device.

We mention in the following paragraphs two real-world
scenarios related to civil protection services that face these
issue in practice.

Nowadays electronic healthcare infrastructures provide
citizens of personal storage devices which store some es-
sential medical information, as well as maintain individual
collections of electronic health information: e.g., the elec-
tronic health record (EHR), potentially shareable across
different domains (such as, practitioners, social security or
insurance officers, and so on) with different access privi-
leges. All these stakeholders may access and update this
information according to their roles and satisfying certain
access control and privacy rules. However, any data ac-
cess and manipulation should be traceable and possibly
reversible, as erroneous, fraudulent, and no longer valid
changes should be detectable and revocable as well. How-
ever, several e-health infrastructure implementations pro-
vide such mechanisms in order to guarantee the security
and privacy of data lying on centralized storage reposi-
tory [6], whereas enforcing the same security policies over
the data stored on the individual personal devices still
raises several issues [7]. Consider the case of a car ac-
cident, first-aid personnel needs to be promptly enabled
to access the data stored in the victims’ personal device.
To this end, any required access credential is disclosed,
bypassed any access control rule. The main drawbacks of
this procedure are that data become completely prone to
potentially destructive operations, sensitive information,
though not related to the current emergency, could be dis-
closed, revoking such emergency-driven access privileges
may be not a trivial task.

Waste management systems include monitoring of waste
disposal processes with particular emphasis in tracking the
transfer of hazardous waste and maintainig the related in-
formation. A typical example is the (now abandoned) ital-
ian hazardous waste tracking system (SISTRI) [8] which
aimed to provide an electronic framework to track the
waste chain at a national level. It featured several devices,
including a passive ”trusted” MSD (a USB stick) which
stored several documents such as waste delivery notes and
packing slips. The waste producer created the related doc-
uments (with a trusted application also lying on the MSD)
and gave it to the transporter who plugged it in a “black-
box”, a trusted device mounted on the vehicle which en-
riched the documentation with annotations about the trip
(e.g., GPS measures, delivery to different transporters or
brokers) to the stocking site. One of the issues raised by
this system was ensuring the reliability of the annotations
history.

In this paper, we concentrate on solving the problem of

2

implementing secure file-grained versioning upon a data
repository lying on a totally passive off-the-shelf storage
device, such as Mobile Storage Devices, aiming at preserv-
ing as much as possible of their flexibility which is probably
the main reason of their success. To this end, we present
the design and the implementation of a Trusted Version-
ing File System (TVFS) which features file integrity and
confidentiality along with a verifiable log of changes mech-
anism to guarantee that: opening a file ensures that it was
created or modified only by the set of users resulting from
its history, and that all versions one can extract from the
file define its history of changes in a seamless interval of
time.

In contrast to existing file systems or versioning systems,
TVFS enables two major benefits:

• TVFS’ security properties do not rely on any security
feature provided by the underlying storage device. It
allows to store and reliably retrieve files and their re-
lated versioning information even on mobile storage
devices that can be moved among computing plat-
forms without the need for a central repository system.

• TVFS provides a security model that affects only
slightly the way in which MSDs are traditionally used:
It does not impose neither additional security proce-
dures, nor further constrains to frequent operations
such as making unattended device backups or multi-
ple copies of versioning files.

TVFS leverages on the Content Extraction Signature
(CES) scheme [9, 10, 11]. As far as we know, this is one
of the earliest applications of this cryptographic primitive
in file systems design.

Paper organization. The paper is organized as follows.
Some preliminary notions and notation about Content Ex-
traction Signature and versioning file systems are given
in Section 2. Our proposal is introduced in Section 3,
whereas details of the underlying file format and operation
are treated respectively in Sections 4 and 5. The security
of the scheme is analyzed in Section 6. A proof-of-concept
implementation along with its performance are discussed
in Section 7. The paper provides a brief survey of propos-
als and research related to our work in Section 8 and some
concluding remarks in Section 9.

2. Background

2.1. Content Extraction Signature

Our file system uses the Content Extraction Signature
(CES) scheme proposed in [9, 10, 11]. In this scheme we
have three actors: the signer S, the bearer B and the ver-
ifier V. S produces and signs a document and gives it to
B.
B can extract a subdocument (i.e., a portion of the orig-

inal document) along with an extracted signature without
any interaction with S and without knowing her private

key. However, while signing the document, S specifies
which parts of it B is allowed to extract a valid signature
for. Eventually, B sends her subdocument to V who can
verify that the subdocument has been signed by S with-
out any interaction with her and without knowledge of the
portion of the original document B did not include in the
issued subdocument.

We use this scheme to implement trustworthy traceabil-
ity and reversibility of file content changes.

2.1.1. Notation and Definitions

A document M is composed of an ordered set of n
smaller messages M = {m1,m2,m3, . . . ,mn}. An ex-
tracted subdocument M ′ of M is composed of a subset of
messages of M so that the i-th message of M ′ can be ei-
ther mi or [(blank/empty) while the position of the other
non-blank messages is the same as in M . The i-th message
of document M is denoted as M [i]. The set {1, . . . , n} of
message indices in M is denoted with [n]. The extraction
subset X is the set of the indices of messages of a docu-
ment M that are included in a subdocument M ′. X is a
subset of the set of message indices in M . Given a docu-
ment M , the Content Extraction Access Structure (CEAS)
C represents the set of all allowed extraction subsets, as it
is stated by the signer S.

Given a document M = {m1,m2,m3, . . . ,mn}, any doc-
ument N composed of the same messages of M placed in
a different order, is considered a different document (e.g.,
N = {m2,m1,m3, . . . ,mn} 6= M).

Example. Let M = {m1,m2,m3,m4}, the document
M ′ = {m1, [,m3,m4} and M ′′ = {[,m2, [,m4} are sub-
documents of M whereas Q = {m1,m3,m4} and Q′ =
{m2,m4} are not.

Moreover, X ′ = {1, 3, 4} and X ′′ = {2, 4} are, respec-
tively, the extraction subset of M ′ and M ′′.

Definition. A Content Extraction Signature (CES)
scheme as defined in [9, 11] consists of four algorithms:

• Keygen(). On input of a security parameter κ, gen-
erates a secret/public key pair (SK,PK)

• Sign(). On input of the signing key SK, a document
M = {m1, . . . ,mn} and a content extraction access
structure C, outputs a content extraction signature
σM

• Extract(). On input of a document M , its σM ,
the signer’s public key PK and an extraction sub-
set X ⊆ [n], outputs an extracted signature σMX

on
the subdocument MX .

• Verify(). On input of an extracted subdocument
MX , its σMX

and PK, outputs a verification decision
∈ {accept, reject}.

3

2.1.2. Properties

An essential property a Content Extraction Signature
scheme is required to satisfy is the following:

Definition. CES-Unforgeability It is infeasible for an
attacker, having access to a CES signing oracle, to produce
a document/signature pair (M,σ) such that: σ passes the
verification test for M and M is either: (a) not a subdoc-
ument of any document queried to the CES signing oracle,
or (b) is a subdocument of a queried document D, but not
allowed to be extracted by the CEAS attached to the sign
query for D.

All schemes presented in [9, 10], are proven to be CES-
unforgeable if the standard signature scheme S they are
built upon, satisfies the standard unforgeability notion,
i.e., it is existentially unforgeable under adaptive chosen
message attacks (see [12]).

In particular, our file system leverages on the instan-
tiation proposed in [11], which is proven to be CES-
unforgeable.

2.2. Versioning File Systems

Versioning is a technique that allows to record files along
with their history (i.e., the sequence of changes they have
been subject to, throughout their lifetime), so that one
can reconstruct any past version of the file, in order to re-
cover possible wrongful changes, as well as to realize how
any file has changed over time. This technique can be
implemented in different ways, according to the applica-
tion field, for example, revision control systems, such as
RCS [13] or CVS [1] are consolidated versioning tools that
are available free of charge and mainly employed in soft-
ware development.

In general, files and history-related metadata are stored
in a file repository which is exclusively maintained by the
versioning system and that can be accessed only through a
certain protocol, implemented by the provided versioning
tools.

Existing versioning systems, provide a plethora of com-
mon basic functionalities, we mention in particular:

• Check-in: is the operation through with a new file
version, currently present in a temporary working
area, is added to the repository.

• The check-out procedure retrieves an arbitrary ver-
sion from the repository and materializes it into a tem-
porary working area. Usually, the check-out operator
returns the latest version in the repository. However,
one can select and check-out a different version, by
explicitly indicating its version number or tag.

• Version merging and pruning. The version num-
ber tends to grow indefinitely, affecting the system’s
performance. These operators allow to reduce it, by
deleting useless (or wrongful) versions as well as merge
together different consecutive versions which carry lit-
tle changes each.

• Comparing versions. Evaluating how stored files
change is a central feature in a versioning system.
Typically, a versioning system should enable its users
to print out the differences between two versions or
between the selected version and the one present in
the workspace.

• Attribute management. Attributes are informa-
tion expressed as couples {attr-name,attr-value} that
can be associated to each version. These attributes
can be used by the versioning system itself as well as
by applications which leverage on it.

• History analysis includes a set operations that are
used to formulate queries to the repository. Very of-
ten, users may want list the file’s history, according
certain lemmas or aggregate actions according certain
version attributes or properties (e.g., author, time-
stamp, annotations).

A versioning file system is essentially a revision control
system that exposes the interface of traditional file sys-
tems. On a versioning file system, the user applications
access implicitly to the current file version, whereas, a new
version is silently created whenever the file content is mod-
ified by means of write operations. Generally, applications
are unaware of accessing versioned files as the system is
implemented as a virtual file system layer overlaying the
real file repository.

Although main file operators can be mapped onto ver-
sioning operators, not every versioning functionality can
be mapped onto the file system semantic. For example,
functionalities such as retrieving an older file version or
browsing the change history of a file should be performed
by means a separated interface, e.g., a set of ad-hoc ver-
sion management tools. In Section 8, we briefly survey the
literature related to versioning file systems.

2.3. Lazy revocation

Lazy revocation [14] is a technique used to efficiently
handle user revocation in groups of users which share en-
crypted resources and the related encryption key. A lazy
revocation scheme assumes that protecting old data from
revoked users is not necessary since they could have al-
ready accessed the data and have potentially disclosed it.
Hence, when a user is revoked, a new key is issued and
delivered to the remaining group members, but previously
encrypted data are not re-encrypted, whereas new data
will be encrypted with the new key. Note that each user
still needs to store the old keys in order to read data en-
crypted at the respective time of validity.

More precisely, consider a group of users who share some
encrypted data. In a lazy revocation scheme, each key is
assigned of a validity interval of time (time-slot). So, if
t is the current time-slot, kt is the currently valid key,
and all keys ki generated at times i < t are considered
revoked. Whenever a user leaves the group, the current

4

key is revoked and the new key kt+1 is generated and de-
livered to the remaining group members. To avoid that
participants store all revoked keys, several schemes [15, 16]
provide users of a single user master key Kt for each time-
slot t. Kt can be used to extract all keys ki (0 ≤ i ≤ t).
This kind of scheme is characterized by a trusted status for
each time-slot t. The initialization algorithm of the lazy
revocation scheme generates the initial engine state E0 re-
lated to the time-slot t = 0. User master key K0 is derived
from E0. When a revocation occurs, the scheme updates
its state taking current state Et to the new state Et+1,
hence, a new master key Kt+1 is derived and delivered.
Revoked users still know Kt, but cannot use it to extract
the new key kt+1.

3. Our proposal

In this section we present the Trusted Versioning File
System (TVFS), our solution to the problem of imple-
menting a trustworthy versioning file system upon totally
untrusted storage, such as mobile storage devices. We first
give a general overview of the file system design and basic
assumptions before we focus on the details in the subse-
quent sections.

TVFS features a file system layer that provides users a
standard file system interface to the underlying versioning
repository. TVFS implements and enriches the standard
file system calls with the required version management op-
erators such as check-in and check-out.

For example, when a process opens a file with the open

system call on a TVFS volume, the TVFS implementation
performs a check-out operation to the underlying reposi-
tory. Subsequently, a working copy of the requested file as
it appears in its latest version is made available in a tempo-
rary storage area. Read and write operations are done on
this working copy through a transparent encryption layer,
achieving confidentiality of the content. The close system
call in turn leads to the check-in of the currently modified
file version and destroys the working copy. Figure 1 shows
an overview of the TVFS file system layer operation.

A set of additional versioning tools implements the
repository management operations that do not fit the usual
file system semantics. This includes functions to check-out
a version that is different from the latest, to compare and
extract differences between two versions, and to show and
analyze file history annotations.

The different versions of each file are stored in a special
data format. This data format contains: (i) the latest
checked-in version of the file in encrypted form; (ii) all
changes (encrypted) made to the file in order to produce
it since file creation; (iii) meta-data to reconstruct every
single file version and to identify the corresponding author
thereof; and (iv) for each version, the extracted signatures
that allow to verify whether the version is trusted and has
been built starting from a trusted version.

The file repository is, in turn, implemented by means
of standard file system calls, so that it is completely inde-

pendent from the underlying storage device as well as its
running file system type. Indeed, a TVFS repository can
be equally stored on a NTFS formatted portable disk or a
FAT32 formatted USB stick.

A TVFS volume is assumed to operate within a security
domain encompassing a Public Key Infrastructure, which
features a certificate authority devoted to issue and revoke
certificates for signature keys, and a generic credential au-
thority which takes care of encryption key management
and access control policy enforcement.

Within such a domain, legitimate users access any TVFS
file system through a set of trusted platforms that:

• establish a secure connection with the credential au-
thority in order to retrieve the user credentials and
keys needed to properly access and verify stored files,
as well as to securely store such credentials locally,
protecting them from unauthorized accesses and mis-
uses;

• locally enforce the access control policy and guaran-
tee that the repository is accessed only following the
right protocol, that is, ensuring that any update to
the file repository is done respecting syntactically and
semantically the TVFS file format.

As TVFS repositories are stored on totally passive stor-
age devices, such as dumb flash drives, we must expect
them to be mounted to, accessed and modified by, as well
as copied and variously manipulated by any platform they
are attached to. However, under the requirement stated
above, any unauthorized data change or corruption can
be immediately detected as the device is connected to a
legitimate platform.

We focus on the implementation and evaluation of the
file system layer in this paper, whereas we leave the cre-
dential authority and other components of the security do-
main at a more abstract level. Since pursuing a complete
separation and independence between the file system de-
sign and key/user management functionalities, we envision
that these aspects can be instantiated by many existing
solutions. In particular, in developing TVFS we have con-
sidered as reference architectures those described in [17]
and [18].

3.1. Preliminaries and notation

In TVFS, any file F is shared by a group of users
G = {u1, . . .}. The credential authority is the compo-
nent that performs any change to the group configuration,
e.g., adds new users to the group, and revokes existing
group members. Whenever a new user joins the group, its
newly created identifier u is added to G, whereas the iden-
tifier of any revoked user ui is added to the set of revoked
users RL = {ur1 , . . .}. Each user ui ∈ G has an own pub-
lic/secret key pair (PKui

, SKui
) used to sign and verify

files shared with members of G.
Our scheme features file content encryption by means

of a symmetric block cipher (see Section 5.4). The set

5

Figure 1: System Operation

K = {k1, . . .} contains the keys to encrypt files shared
by members of group G. The credential authority han-
dles keys in K according to the file access policy agreed
among group members and following the usual key life-
cycle events (creation, revocation, renewal due to user re-
vocation, etc.). We denote the configuration of group G
with the tuple < G ,RL,K >. Group members access the
shared files through their user platform (UP). For simplic-
ity, we assume user platforms are individual, so that user
ui accesses shared files through platform UPi.

Any TVFS file F is stored as the ordered sequence
{V0, . . . , Vl} of records that represent all its version from its
initial version V0 to the latest one Vl (see Section 4). Each
version Vi has been produced consequently to the changes
made to F by a certain group member uj ∈ G. Once users
have created a new version Vi, they also sign the file — we
describe the signature scheme in Section 5. We say that
user uj is the signer, denoted as si, of version Vi. Note
that, for any choice of versions Vi and Vk ∈ F, (i 6= k), it
could be that si = sk = uj where uj is a certain member
of G who created and signed both versions.

The solution we present guarantees:

• that F preserve its integrity and confidentiality;

• that F has been created by user s0 and subsequently
modified by users s1, . . . , sl; and

• that the ordered set of versions {V0, . . . , Vl} exactly
defines the history of F in a seamless time interval.

4. File structure

A shared versioned file F is stored as an ordered se-
quence of file versions V0, . . . , Vl, where V0 is the initial
version and Vl is the latest one. The initial version V0 is
created along with the file and does not contain user data.

A file version Vi, i > 0 is composed of a set of blocks
{hi, b1, . . . , bn}, the special block hi is the header block of
version Vi. In our application, each file version plays the
role of a document M in the content extraction signature
given above. We denote the j-th block in Vi with Vi[j] =
bj . In case of ambiguity, we denote the i-th version of file
F as F.Vi.

Blocks in a file version Vi can be either old or new. Old
blocks come unchanged from the previous file version Vi−1

whereas new blocks have been changed in the current ver-
sion. Furthermore, we denote as undo blocks, those blocks
of Vi−1 that have been replaced by new blocks in Vi.

As in most versioning systems, we adopt the strategy of
keeping the current version of a shared file entirely avail-
able, whereas the previous versions are stored as undo
records, i.e., as the patch that has to be applied to the
latest version in order to obtain the previous one. In our
file format, the undo record representing any intermediary
version Vi is composed of the undo blocks of version Vi+1.

Moreover we have to distinguish between latest and cur-
rent versions. The current version is the one that is cur-
rently accessed by the user. By default, the current version
is also the latest but this may not be true if, for example,
the user wishes to work on an older version in order to
start a different branch of the file. In this case, before al-
lowing the user to access the requested version, the system
first reconstruct and selects it as current. We denote the
current version with Vc. Trivially, if Vl is the latest version
and Vc is the current version, c ≤ l.

Figure 2: Sample file with three versions.

Let’s consider the example depicted in Figure 2. The file
F is composed of three versions (we do not count the initial

6

version V0) represented by the set V0, . . . , V3. Version V3

is composed of the blocks {h3, b1, b2, b
′
3, b
′
4, b5} where h3, b

′
3

and b′4 are new blocks, b1, b2 and b5 are old blocks and,
consequently, the undo record representing V2 is composed
of block h2 and previous version of blocks b3 and b4.

We define as old(Vi) the extracted subdocument of Vi−1

containing hi−1 and all old blocks in Vi, and as undo(Vi)
the extracted subdocument of Vi−1 containing all un-
doblocks of Vi. In our example old(V3)={h2, b1, b2, [, [b5}
and undo(V3) = {h2, [, [, b3, b4, [}.

The header block contains the information needed to
reconstruct and validate the whole file version. More in
detail, the header block hi of a certain version Vi contains:

the identity of the signer si, and three signatures: σ
(i)
full,

σ
(i)
old and σ

(i)
undo that are respectively: the signature of the

whole i-th version computed by si and the extracted sig-
natures of the subdocuments old(Vi) and undo(Vi) of Vi−1.

Further file metadata is also placed in the header block,
such as file length, the number of blocks, information
about data encryption, etc.

Note that, since it changes at each version, the header
block is always present in each undo record. Moreover,
for each version Vi the header block hi−1 also belongs to
old(Vi), though it never appears within the old blocks of
any version. This is because hi−1 is needed to verify the
extracted signature of old(Vi).

The content of a File version is encrypted on a per block
basis. Each block can be encrypted, with a different key
belonging to the group key set K. For example, given a
version Vi = {hi, b1, b2, . . .} the identifier of the key used to
encrypt any block bj is stored as kj in a meta-data section
of the block data structure.

5. File operation

5.1. Creating and revising versioned files

We describe how new files and new versions of an ex-
isting file are created. In the following we will refer to
a file F = {V0, . . . , Vl} and denote as si the signer of
Vi, (0 ≤ i ≤ l) (note that for some i 6= j can be si = sj).

When s0 creates the new file F , the file system creates
its initial version V0. Such a version contains only the
header block h0.

The first version V1 is separately created when the ear-
liest data is written to the file.

Here we describe this process along with the procedure
followed to create a new version to an existing file. We
recall that Vi[j] denotes the j − th block bj of version Vi
and, in particular, Vi[0] denotes the header block hi.

Let Vl = {hl, b1, b2, . . . , bn} be the latest version of file
F . Assume user sl+1 opens F and modifies a set of blocks
in Vl whose indices form the set J (note that always 0 ∈ J).
The file system creates the new version Vl+1 whose blocks
are: Vl+1[j] = b′j if j ∈ J and Vl+1[j] = Vl[j] otherwise.

For each version, the file system computes two signature
extractions and one new full signature. These signatures

are stored in the header block hl+1, and are computed as
follows:

• σ(l+1)
old = Extract(Vl,σ

(l)
full , PKsl , [n]−J ∪{0}) is the

extracted signature of the old blocks of Vl+1 and as-
sures that such blocks come from Vl (without recon-
structing Vl and without contacting ul).

• σ(l+1)
undo = Extract(Vl,σ

(l)
full , PKsl , J) is the extracted

signature of the undo blocks of Vl+1 and allows to
verify that such blocks come from version Vl.

For each version Vi, we denote with C = {J ∈ 2[n]|0 ∈ J}
the default CEAS. This setting states that all extracted
subdocument of Vi include the header block hi.

Then, the system computes the signature of the whole

version Vl+1 as σ
(l+1)
full =Sign(SKsl+1

, Vl+1, C) , and adds it
to hl+1. On the filestore, the previous version Vl is replaced
by its subdocument undo(Vl+1) and eventually, the entire
new version Vl+1 (e.g., all its blocks) is appended to the
file F .

5.2. Version extraction and verification

As we said above, in a versioned file F = {V0, . . . , Vl},
each version Vi(0 < i ≤ l) is formed by adding just
new/modified blocks and keeping all unchanged blocks of
Vi−1. On the other hand, except the latest version Vl which
is always completely available, any intermediate version
Vi, (0 < i < l) is reconstructed (on demand) by apply-
ing iteratively to Vl, all undo records representing versions
Vj , (i ≤ j < l).

The full signature of the current version Vi along with
the identifier of its signer si are retrieved from its header
block hi. If Vi is not the initial version, hi also contains
the extracted signatures of old and undo blocks whereas
the signer identifier si−1 is available in the header block
hi−1 (that is stored in the undo record that represents that
previous version.)

Let u be a user who checks out the version Vi from
F . User u can check-out that version if she is able
to reconstruct and successfully verify the integrity of all
Vj(i < j ≤ l) (no matter if any signer sj ∈ RL). More-
over, u can trust that version if she can validate it, i.e., if
she can successfully verify the integrity of Vi and all previ-
ous versions Vj , (0 ≤ j < i) and, moreover, not one of the
users that signed those version appears in RL.

More precisely, we say that a version Vi is valid if:

• its full signature σ
(i)
full is successfully verified and

was generated by a non-revoked user sl, i.e.,

Verify(PKsi , Vi,σ
(i)
full) is true and sl /∈ RL.

• for i > 0, the extracted signature σ
(i)
old of old blocks of

Vi is successfully verified, that is:

Verify(PKsi−1
,old(Vi),σ

(i−1)
old) is true.

• for i > 0, the extracted signature σ
(i)
undo of undo blocks

of Vi is successfully verified,

i.e., Verify(PKsi−1
,undo(Vi),σ

(i−1)
undo) is true.

7

VERIFY-VERSION(F, Vc):

res =Verify(PKsc , Vc,σ
(c)
full)

if c = 0:
return res

return res∧
Verify(PKsc−1 , old(Vc),σ

(c)
old) ∧

Verify(PKsc−1 , undo(Vc),σ
(c)
undo)

RECONSTRUCT(F, Vc, r):
if c = r:

return Vc
let Jc = {j|undo(Vc)[j] 6= [}
build Vc−1 such that:

Vc−1[j] =

{
undo(Vc)[j] if j ∈ Jc
Vc[j] otherwise

if VERIFY-VERSION(F, Vc−1) is True:
return RECONSTRUCT(F, Vc−1, r)

else return ⊥

VALIDATE(F, Vc, lsv)
if c = 0:

if sc ∈ RL:
return ⊥

else return lsv

Vc−1 ← RECONSTRUCT(F, Vc, c− 1)
if Vc−1 is ⊥:

return ⊥

if sc ∈ RL:
lsv ← Vc−1

else lsv ← latest(Vc, lsv)

return VALIDATE(F, Vc−1, lsv)

Figure 3: Pseudo-code of algorithms RECONSTRUCT and VALI-
DATE

In Figure 3 we show a description of algorithms RE-
CONSTRUCT() and VALIDATE().

5.3. Handling Invalid File Versions

Now let us explain how the validation process allows the
file system to handle non-valid file versions.

We highlight that signature verification failures and “re-
voked signatures” are treated differently. Indeed, when a
signature verification fails, it is not possible to establish
whether the version which caused the failure has been al-
tered rather than its signature. Moreover, if such a version
shares some blocks with other versions, it is not possible
to establish which is the bad one. Therefore, whenever
such events occur, the validation process fails and the file
is considered corrupted.

However, we assume that if revoked users still created
consistent versions, although the content might be some-
how “wrong” or “malicious” (which, for instance, might
have been the reason for revocation), their versions can be
detected and the changes they introduce can be recovered.

Therefore, when the checkout of a certain version Vi is
requested, there are three possible results:

• The requested version Vi is successfully built and val-
idated.

• The validation of version Vi failed. Version Vk 6= Vi
and 0 ≤ k < i (where k is the highest value such
that Vk is valid) is returned instead. This means that
all versions Vj , (k < j ≤ i) are not valid, because of
signer sj ∈ RL.

• Vj =⊥ (failure) If during the validation of any ver-
sion Vi of F a signature verification failure occurs,
the whole file is considered non-valid, the validation
process immediately ends and an error message is no-
tified to the process that was accessing the file.

5.4. File Encryption

In our scheme, file encryption is performed by means
of a lazy revocation scheme. This choice has one impor-
tant reason: re-encrypting every involved files, whenever a
key revocation occurs, is not possible since Mobile Storage
Devices on which those files lie, may be not available.

5.4.1. Encryption Key Management

As introduced above, members of group G agree on a
set of cryptographic keys K = {k1, . . .} in order to encrypt
(by means of a symmetric algorithm) the content of any
shared versioned file. We denote with t the time of validity
of the key kt ∈ K. At a certain time t = 1, when the
group G is formed, members use an initial set of keys K =
{k1} containing just the first encryption key. Afterwards,
whenever one of the usual events in the group’s life-cycle
occurs (e.g., a user leaves the group, the encryption key
is disclosed), the GA revokes the key currently in use kt,
generates a new key kt+1 and adds it to the set K. So that,
at time t + 1, we have K = {k1, . . . , kt, kt+1}, kt+1 is the
current key and any other key ki ∈ K where (1 ≤ i < t+1)
is revoked.

5.4.2. Revising Files

Let F = (V0, . . . , Vn−1) be a versioned file shared by
group G, and let ui ∈ G be the user who adds the new
version Vn to F at time t. New blocks are mandatorily
encrypted using the current key kt ∈ K and added to the
file according to the scheme described above. The key-id
field of each block bi ∈ new(Vn) is set to kt whereas blocks
in old(Vn) and undo(Vn) remain unchanged.

5.4.3. Reading Files

Reading operations over the versioned file F may in-
volve blocks created in different time slots and hence, en-
crypted with different encryption keys. For example, let
the user ui, who accesses the file F from an MSD at-
tached to the platform UPi, read the sequence of m blocks
{bj1 , bj2 , . . . , bjm}. In order to decrypt the block’s content
the user ui retrieves the keys {kj1 , · · · , kjm} from the set
K.

8

5.4.4. Dealing with missing encryption keys

If UPi is an off-line platform, it may happen that some
blocks of the version Vn of file F have been encrypted
with a key that is not present in K. This is the case
in which user ui has been revoked, thus, the platform is
not allowed to handle the file version which contains that
block whereas is still enabled to access to previous versions
of F . Therefore, the platform is forced to search for and
to check out the latest file version (say Vk, k < n) in which
the most recent encryption key is still present in K. Once
that version (if any) is reconstructed, the platform can
perform read operations as usual, whereas write operations
will lead to the creation of a new branch of F . In our
scheme, this operation creates a new file F ′ whose version
V ′1 is the copy of version Vk ∈ F and any possible change
made by ui is stored in the following versions of F ′.

6. Security Analysis

In this section we discuss the security model of TVFS.
In particular, we consider two important aspects:

1. Any TVFS file can be freely replicated, even by un-
trusted users and platforms. Each unmodified copy is
considered valid while it can be successfully verified.

2. Each copy F ′ of F = (V0, . . . , Vl) is considered a valid
branch of F . In particular, if a non-revoked user uk
legitimately creates a new file F ′ = (V ′0 , . . . , V

′
k) where

(V ′i = Vi, 0 ≤ i ≤ k) and possibily new valid versions
V ′k+1, V

′
k+2, . . . are added, the resulting file F ′ is con-

sidered a valid branch of F if V ′k is a valid version of
F . Moreover, file F ′ is still a valid branch of F , even
if any user uj who signed a version Vj ∈ F, (j > k)
has been revoked.

In the following, we describe the main security threats
a versioning file system may encounter in our application
scenario, and we argue how TVFS copes with them.

6.1. Threat model

In our model, we consider insider attacks targeted at
changing the file history or silently altering the file content.
In particular, we consider the scenario in which a malicious
user uk aims at fraudulently modifying a certain file F =
(V0, . . . , Vl) in one of the following possible ways:

1. pushing some changes into the file without creating a
new version, i.e., changing the content of an existing
version;

2. changing the author of an existing intermediary ver-
sion, e.g., so that a version initially created by a re-
voked user can be afterwards attributed to a different
author (e.g., uk);

3. deleting an existing intermediary version or creating
a new version between two existing consecutive ver-
sions;

Let file F be composed of versions V0, . . . , Vl, and con-
sider an insider attacker uk ∈ G, uk 6= sl. We show
how TVFS prevents uk to successfully carry out the at-
tacks listed above. We recall that the Content Extrac-
tion Signature C implemented by TVFS satisfies the CES-
Unforgeability property (see Section 2.1), as the standard
signature scheme S it is based upon, statisfies the standard
unforgeability property.

1. An adversary cannot push changes into an ex-
isting version. Suppose that uk aims at tampering
with the content of the record representing any ex-
isting intermediary version Vi, where 0 ≤ i < l. In
particular, the adversary may attempt to change ei-
ther the content of any block bj , (including hi), delete
any block bj or add a new block b̄ to Vi.
We first argue that TVFS does not allow uk to modify
any block bj ∈ Vi, ∀0 ≤ i < l. To this end, recall
that Vi is represented by the undo record undo(Vi+1)
and that each block bj ∈ undo(Vi+1) is protected by

signatures σ
(i)
full, computed by the signer si and stored

in hi and σ
(i)
undo extracted by signer si+1 and stored in

hi+1. Moreover, the integrity of block hi+1 in turn, is

assured by the signature σ
(i+1)
full computed by si+1.

We firstly consider that si 6= si+1. If uk 6= si and
uk 6= si+1, in order to modify any block bj ∈ Vi, uk
should be able to forge σ

(i)
full and σ

(i+1)
full , but this is

not possible due to the standard unforgeability of S.
If uk = si, she can change the content of bj and re-

compute σ
(i)
full and σ

(i)
undo but cannot replace the latter

in hi+1 since she cannot forge σ
(i+1)
full . Conversely, if

uk = si+1, upon changing bj , the adversary can nei-

ther forge σ
(i)
full nor σ

(i)
undo.

We stress that the adversary can neither add a new
block b̄, nor delete any existing block bj from version
Vi, since both these actions entail the re-computation
of the involved signatures as well as the modification
of metadata contained in the blocks hi and hi+1.
Consider the case in which uk = si = si+1 or, more
generally, consider that uk is managing to make fraud-
ulent changes into a sequence of d intermediary ver-
sions Vi, Vi+1, . . . , Vi+d which she signed herself. Ac-
cording to the assumptions we made above, we have
0 ≤ i < i + d < j = (i + d + 1) ≤ l and uk 6= sj so
that uk may produce a sequence of tampered versions
V ′i , . . . , V

′
j−1 for F . However, the header block hj con-

tains the extracted signatures σ
(j)
undo and σ

(j)
old, both

extracted from the full signature σ
(j−1)
full of the origi-

nal version Vj−1. Let σ̄ be the full signature of the
tampered version V ′j−1, in order to push her changes

to the file, uk should be able to extract σ
(j)
undo and σ

(j)
old

from σ̄ but, due to the CES-unforgeability of C, this

is not possible, unless σ̄ =σ
(j−1)
full , that is Vj−1 = V ′j−1.

2. An adversary cannot change the author of an
existing version. Indeed, in order to replace the

9

signer si in Vi, uk should be able to silently push
several changes to metadata contained in hi and hi+1.

3. An adversary cannot delete or create inter-
mediary versions. Indeed, deleting an intermedi-
ary version Vi, requires uk to make several changes
to the header block of version Vi+1. In particular,
note that the header block hi of the vanishing version
Vi is contained in undo(Vi+1) whose extracted signa-
ture is stored in hi+1. Consider that undo(Vi+1) and
undo(Vi) necessarily differ as hi 6= hi−1.
Analogously, inserting a new version V ′i between Vi
and Vi+1 would require uk to either change extracted
signatures in hi+1 or make V ′i include all blocks in
undo(Vi+1), but this is not possible since hi belongs
to undo(Vi+1) but not to V ′i .

7. Prototype implementation

In this section, we briefly present a proof-of-concept pro-
totype implementation of TVFS and discuss main issues
raised by this task, as well as the achieved performance.

The major properties that make Mobile Storage Devices
so widely appreciated are probably their extreme flexibil-
ity and portability, that allow users to transport and ex-
change files without any particular restriction or slowness.
Therefore, in designing TVFS our main aim was second-
ing these wishes, making possible to share multiple-version
files almost like plain files, among the widest possible set
of platforms.

To this end, we chose to implement TVFS as a user-level
file system layer leveraging on the FUSE framework [19], so
that its additional functionalities, could be transparently
mapped to the storage device’s chosen file system, achiev-
ing substantial independency from the user’s preferences.
Moreover, we chose to implement TVFS using Python [20],
a well known and consolidated high-level programming
language that provides a stable interface with the FUSE
framework. We remark that implementing the TVFS pro-
totype using these two tools enables good OS portabil-
ity, as FUSE is currently under development for several
mainstream operating systems, including Linux [19], Mac
OS X [21], and Windows [22, 23].

Our early experiments aimed at measuring the perfor-
mance of a real-world implementation of the Content Ex-
traction Signature scheme. Although theoretically, CES
should perform better than schemes based on batch sig-
nature, we wondered if, once implemented, it would also
offer high performance in practice. As a first step, we just
implemented the scheme as is proposed in [11]. The im-
plementation of the Content Extraction Access Structure
was the main matter of concern. This structure is used,
during extracted signature verifications, to check if the ex-
tracted subdocument is composed of a legitimate subset
of the full document’s blocks, in other words the verifier
check whether the set of the subdocument’s indices be-
longs to the CEAS. Therefore, the CEAS is described as

an arbitrary subset of the powerset of the document’s block
indices. This object should be handled carefully, for two
reasons: (1) it is attached to the signature, hence, its rep-
resentation strategy affects the overall file system perfor-
mance in terms of storage space, (2) membership queries
to rather large CEASes may produce unacceptable over-
head. In our prototype we chose to replace the CEAS with
a list of “mandatory blocks” that contains the blocks of the
original document that must be present in every extracted
subdocument. Though this model is less general than the
original (that enables the signer to impose more sophis-
ticated extraction policies), it is sufficient for the sake of
our experiments and performs remarkably better. Figure 4
summarizes results of our experiments with a full-python
implementation of TVFS. In particular, Figure 4(a) shows
the CES signature size, whereas Figures 4(b), 4(c) and
4(d) give a view over the scheme’s signature, extraction
and verification times. Graphs in Figures 4(e) and 4(f)
show respectively the time needed to check in a new ver-
sion (e.g., as it happens when the user writes some changes
to the file), and to check-out the latest version from a two-
versions file, that is the time spent in each iteration of the
VALIDATE() algorithm.

The experiments have been conducted on an ordinary
PC equipped with a processor AMD AthlonTMII X2, 4
Gigabytes of RAM and two hard disks Serial ATA.

We find that achieved experimental results are quite en-
couraging and show that our approach is practical and is
suitable to its target scenario. Performances are rather
good, considering that, usually, MSDs perform worse than
traditional hard disk so that, the overhead due to check-
in and check-out operations is partially absorbed by the
device’s latency.

The main drawback of our approach is that using a bod-
ied interpreted language such as Python significantly low-
ers performances, especially in term of I/O throughput.
On the other hand, we point out that Python offers a good
interface to native languages like C and C++ (as its vari-
ant jython does to the java world), so that it could be pos-
sible to implement some time-critical tasks with platform-
dependent components, though embedded in the overall
high-level infrastructure. Some experiments we did in this
direction produced promising results.

8. Related Work

Versioning file systems have a more than thirty years
long history. Among the earliest solutions, we mention the
file system of the long-lived VMS [24] operating system,
which since the eigthies allows users to handle multiple
versions of their files, the Cedar [25] and the Elefant [26]
file systems.

Versioning file systems usually fall in two categories:
continuous versioning and snapshotting file system, ac-
cording to how and when new versions are created. Con-
tinuous versioning file systems such as CVFS [29], Ve-
sionFS [27] and Wayback [30], create a new version of a

10

(a) Size of the signature of full documents composed of 50,
. . . ,5000 blocks. The Signature size is independent from the
block size.

(b) Time employed to compute the signature of full documents
composed of 50, . . . , 5000 blocks. Time performance was mea-
sured on files with blocks of different sizes (512, . . . , 4096 bytes).

(c) Time employed to extract the signature for subdocument
composed of different subsets of blocks from an original docu-
ment whose block size is 4096 bytes.

(d) Time employed to verify the extracted signature for sub-
document of different sizes.

(e) Time employed to check in a new version (f) Time employed to check out the latest version from a two-
versions file

Figure 4: Content Extraction Signature: performance summary.

11

Name Main fea-
tures

Architecture Requirements Trust model Applicable to
MSDs

Type Key Mgmt

TVFS File encryption;
trustworthy
data reten-
tion, verifiable
history in a
seamless inter-
val of time

The repository
lies on an un-
trusted MSD

Trusted client
OS, untrusted
repository

Trusted client
OS, untrusted
repository

Cont. Generic PKI
plus encryption
key distribution
service

VDisk[5] File-grained
versioning; reli-
able log mgmt.

The client is a
compartment
running a legacy
OS. Versioning
is implemented
as a layer below
the Xen virtual
driver inter-
face; user-level
applications
accomplish
versioning and
logging tasks.

XEN based vir-
tualized infras-
tructure

The hardware is
assumed phys-
ically secure.
The virtual-
ization layer is
trusted. The
client OS and
the user-level
components are
untrusted

Not applicable Cont. n/a

Ext3Cow
with
audit[2]

Extends the
Ext3 file system
witha a mech-
anism which
features veri-
fiable digital
audit trials.

When a new
version is com-
mitted, a MAC
for the change
is generated
and published
to a trusted
third party
which maintains
the file history
information.

Remote audit
server managed
by a trusted
third party

Auditor relies
on the audit
server. The
file storage is
untrusted

Not applica-
ble, unless a
mechanism
to distinguish
among different
clones of the
storage devices
is provided.

Snap. Users are pro-
vided of a
public/private
key pari by an
external PKI.
File encryption
keys are stored
in “lockboxes”
encrypted with
the user’s pri-
vate key.

Ext3Cow
with
secure
del.[3]

Extends the
Ext3 file sys-
tem with a
mechanism for
secure deletion
of individual file
snapshots.

Features block-
grained data
encryption with
authenticated
encryption.
A portion of
the result-
ing cypher-
text(stub) is
stored as meta-
data and is the
only part which
is processed
when a secure
deletion occurs.

The client OS is
trusted; It is as-
sumed that the
HD is physically
secure

Not applicable.
An MSD can
be arbitrarily
removed and
cloned.

Snap. As in [2]

SVSDS[4] Selective file-
grained version-
ing; Unautho-
rized changes
reversibility;
enhanced file
access control.

Leverages on
a dedicated
storage device
whose firmware
implements
the version
control system
and a trusted
administrative
interface.

Dedicated stor-
age device.

The storage de-
vice is trusted,
the client OS is
untrusted

Not applicable
on untrusted
off-the-shelf
MSD.

Snap. N/a

VersionFS[27]
with
Truecrypt[28]

Plain versioning
file system layer
mounted on top
of an encrypted
MSD.

The repository
lies on an MSD
that is plugged
to a personal
workstation.

Trusted client
OS

Trusted client
OS

Cont. Relies on an ex-
ternal key man-
agement infras-
tructure.

Figure 5: Related work, main features summary.

12

H
is

to
ry

re
li
a
b
il
it

y

D
a
ta

in
te

g
ri

ty

D
a
ta

se
c
re

c
y

D
a
ta

re
tr

ie
v
a
b
il
it

y

C
h
a
n
g
e

im
m

u
ta

b
il
it

y

C
h
a
n
g
e

u
n
d
e
n
ia

b
il
it

y

V
e
rs

io
n

m
e
rg

in
g
/
p
ru

n
in

g

C
o
n
te

n
t

re
v
o
c
a
ti

o
n

(p
e
r

u
se

r)

P
e
r

v
e
rs

io
n

e
n
c
ry

p
ti

o
n

P
e
r

fi
le

e
n
c
ry

p
ti

o
n

P
e
r

b
lo

ck
e
n
c
ry

p
ti

o
n

P
e
r

d
e
v
ic

e
e
n
c
ry

p
ti

o
n

T
ru

st
e
d

c
li
e
n
t

O
S

T
ru

st
e
d

th
ir

d
p
a
rt

y

T
ru

st
e
d

st
o
ra

g
e

d
e
v
ic

e

T
ru

st
e
d

re
m

o
te

st
o
ra

g
e

se
rv

e
r

D
e
v
ic

e
F

S
in

d
e
p

e
n
d
e
n
c
e

C
li
e
n
t

O
S

In
d
e
p

e
n
d
e
n
c
e

S
to

ra
g
e

d
e
v
ic

e
in

d
e
p

e
n
d
e
n
c
e

TVFS X X X X X X X X X X X X X X
VDisk[5] X X X X X X
Ext3Cow+audit[2] X X X X X X X
Ext3Cow+secure del.[3] X X X X X X X
SVSDS[4] X X X X X X
VersionFS[27]+Truecrypt[28] X X X X

Figure 6: Features comparison

file, every single time it is modified, so that the set of all
version of a file seamlessly represents its history. So called
snapshotting file systems like Ext3Cow [31], retain multi-
ple versions of the whole files system (snapshots), created
automatically at regular intervals of time. However, snap-
shotting file systems cannot keep track of changes made
between two snapshots.

Pursuing the regulatory compliance has been one of the
main guidelines to several secure versioning file system
projects. Peterson et al. proposed two cryptographic ex-
tensions of Ext3Cow which feature secure deletion [3] and
verifiable auditing [2]. More in general, the main goal of
a secure versioning file system is to guarantee file version
integrity, retrievability and historical log reliability. To do
so, SVSDS [4] and VDisk [5], push file block-grained ver-
sioning into the boundaries of a Trusted Computing Base
respectively identified with the disk drive firmware or a
secure Virtual Machine Monitor which embodies a virtual
storage device.

Designing a versioning file system is still a challenging
task, as it is essentially a matter of achieving an accept-
able tradeoff among I/O throughput, storage space em-
ployment and, having deal with sensitive data retaining,
security requirements. The latter aspect, in particular,
highly impacts on the overall architecture. Moving the
versioning functionality out of the Operating System as
in SVSDS and VDisk allows to keep the data repository
rather far from the hands of potential intruders, as well
as implementing such functionalities at such a low level
may significantly improve performance. However, this ap-
proach does not fit those application scenarios in which the
data repository lies on mobile or untrusted storage devices,
as we focus on in this paper. Analogously, leveraging on
a trusted third party, as happens in [3] and [2] for ver-
sioning operations, poses several problems with respect to
the traditional way MSD are used. For example, allowing
users to freely make multiple copies of a repository could
affect the capacity to log the actions done to any file it
contains, coherently.

A very basic approach to enhance the security of a plain

versioning file system, within our target scenario, is storing
its repository on an encrypted volume [32, 28]. However,
this solution lacks of flexibility as it does not allow to im-
plement fine-grained access control policy and poses some
non trivial issues to handle users/keys revocation. Fig-
ure 5 summarizes main characteristics of some of related
works cited above. A feature-by-feature comparison with
TVFS is shown in Figure 6.

As far as we know, TVFS is one of the earliest versioning
file systems, designed to explicitly cope with security is-
sues raised by managing data stored on untrusted storage
devices as MSDs.

9. Conclusion

In this paper we present the design and the implemen-
tation of a novel Trusted Versioning File System (TVFS)
that achieves confidentiality and integrity of stored files, as
well as the authenticity of their change history in a certain
seamless interval of time. Unlike the majority of existing
secure versioning file systems, TVFS mainly targets those
application scenarios in which the data repository resides
on untrusted Mobile Storage Devices, such as forthcoming
e-health applications that increasingly delegate patient’s
data storage to personal held devices.

TVFS security leverages on the Content Extraction Sig-
nature scheme, to implement its data repository. In this
paper we describe the overall architecture TVFS aims to
fit, the data repository’s structure, the versioning process
and the file signature scheme. Eventually, we analyze its
security achievements.

We present a proof-of-concept prototype which imple-
ments a user-level file system layer that can work inde-
pendently from the underlying storage technology and file
system type. It is written in a high-level programming lan-
guage, achieving high flexibility and portability. Early per-
formance measurements are also presented and discussed.
We belief that our results promise remarkable improve-
ments.

13

Although we explicitly address the problem of enforcing
access control over USB drives and similar devices, our
solution could be extended to distributed architectures.
For instance, in a cloud computing infrastructure the file
repository can be hosted by a third party service provider
and can be accessed through the network.

References

[1] Berliner, Polk, Concurrent versions system (cvs), http://www.
cvshome.org/ (2001).

[2] Z. Peterson, R. Burns, G. Ateniese, S. Bono, Design and imple-
mentation of verifiable audit trails for a versioning file system,
in: Proceedings of the 5th USENIX conference on File and Stor-
age Technologies table of contents, USENIX Association Berke-
ley, CA, USA, 2007, pp. 20–20.

[3] Z. Peterson, R. Burns, J. Herring, A. Stubblefield, A. Rubin,
Secure deletion for a versioning file system, in: Proceedings
of the 4th conference on USENIX Conference on File and Stor-
age Technologies-Volume 4, USENIX Association Berkeley, CA,
USA, 2005, pp. 11–11.

[4] S. Sundararaman, G. Sivathanu, E. Zadok, Selective versioning
in a secure disk system, in: Proceedings of the 17th USENIX
Security Symposium, USENIX Association, 2008, pp. 259–274.

[5] J. Wires, M. Feeley, Secure file system versioning at the block
level, in: Proceedings of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, ACM New York,
NY, USA, 2007, pp. 203–215.

[6] H. Löhr, A.-R. Sadeghi, M. Winandy, Securing the e-health
cloud, in: Proceedings of the 1st ACM International Health
Informatics Symposium (IHI 2010), ACM, 2010, pp. 220–229.
doi:http://doi.acm.org/10.1145/1882992.1883024.
URL http://doi.acm.org/10.1145/1882992.1883024

[7] M. Winandy, A note on the security in the card management
system of the german e-health card, in: Proceedings of the 3rd
International ICST Conference on Electronic Healthcare for the
21st Century (eHealth 2010), Springer, 2010, pp. 196–203.

[8] I. M. of Environment, Italian waste tracking system (sistri),
http://www.sistri.it (2009-2011).

[9] R. Steinfeld, L. Bull, Y. Zheng, Content extraction signatures,
in: Information Security and Cryptology - ICISC 2001, 4th
International Conference Seoul, Korea, December 6-7, 2001,
Proceedings, Vol. 2288 of Lecture Notes in Computer Science,
Springer, 2002, pp. 285–304.

[10] R. Steinfeld, L. Bull, Y. Zheng, Content extraction sig-
natures (full version), http://www.sis.uncc.edu/~yzheng/

publications/files/CES_full-2003.pdf (2003).
[11] L. Bull, D. McG. Squire, Y. Zheng, A Hierarchical Extraction

Policy for content extraction signatures, International Journal
on Digital Libraries 4 (3) (2004) 208–222.

[12] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme
secure against adaptive chosen-message attacks, SIAM J. Com-
put. 17 (2) (1988) 281–308.

[13] W. Tichy, Design, implementation, and evaluation of a Revision
Control System, in: Proceedings of the 6th international con-
ference on Software engineering, IEEE Computer Society Press
Los Alamitos, CA, USA, 1982, pp. 58–67.

[14] M. Backes, C. Cachin, A. Oprea, Lazy revocation in crypto-
graphic file systems, in: 3rd International IEEE Security in
Storage Workshop (SISW 2005), December 13, 2005, San Fran-
cisco, California, USA, 2005, pp. 1–11.

[15] D. Naor, A. Shenhav, A. Wool, Toward securing untrusted stor-
age without public-key operations, in: Proceedings of the 2005
ACM Workshop On Storage Security And Survivability, Stor-
ageSS 2005, Fairfax, VA, USA, November 11, 2005, ACM, 2005,
pp. 51–56.

[16] M. Backes, C. Cachin, A. Oprea, Secure key-updating for lazy
revocation, in: Computer Security - ESORICS 2006, 11th Euro-
pean Symposium on Research in Computer Security, Hamburg,

Germany, September 18-20, 2006, Proceedings, Vol. 4189 of Lec-
ture Notes in Computer Science, Springer, 2006, pp. 327–346.

[17] L. Catuogno, M. Manulis, H. Löhr, A.-R. Sadeghi, M. Winandy,
Transparent mobile storage protection in trusted virtual do-
mains, in: 23rd Large Installation System Administration Con-
ference (LISA’09), USENIX Association, 2009.

[18] G. Singaraju, B. H. Kang, Concord: A secure mobile data au-
thorization framework for regulatory compliance, in: Proceed-
ings of the 22nd Large Installation System Administration Con-
ference, LISA 2008, November 9-14, 2008, San Diego, CA, USA,
USENIX Association, 2008, pp. 91–102.

[19] M. Szeredi, File system in user space, http://sourceforge.

net/projects/fuse.
[20] G. V. Rossum, The Python Language Reference, Python Soft-

ware Foundation, 1990-2011, http://www.python.org.
[21] B. Fleischer, E. Larsson, FUSE for OS X, https://osxfuse.

github.com.
[22] Dokan Project, Dokan – User mode filesystem for windows,

http://dokan-dev.net/en.
[23] EldoS Corporation, Callback file system, http://www.eldos.

com/cbfs.
[24] K. McCoy, VMS file system internals, Digital Press, 1990.
[25] D. Gifford, R. Needham, M. Schroeder, The cedar file system,

Communications of the ACM 31 (3) (1988) 288–298.
[26] D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton,

J. Ofir, Deciding when to forget in the elephant file system,
ACM SIGOPS Operating Systems Review 33 (5) (1999) 110–
123.

[27] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, E. Zadok, A
Versatile and User-Oriented Versioning File System, in: Pro-
ceedings of the Third USENIX Conference on File and Stor-
age Technologies (FAST 2004), USENIX Association, San Fran-
cisco, CA, 2004, pp. 115–128.

[28] TrueCrypt Foundation, Truecrypt - free open-source on-the-fly
encryption, http://www.truecrypt.org/ (2004).

[29] C. Soules, G. Goodson, J. Strunk, G. Ganger, Metadata Effi-
ciency in Versioning File Systems, in: Proceedings of the 2nd
USENIX Conference on File and Storage Technologies, USENIX
Association Berkeley, CA, USA, 2003, pp. 43–58.

[30] B. Cornell, P. Dinda, F. Bustamante, Wayback: A user-level
versioning file system for linux, in: Proceedings of Usenix An-
nual Technical Conference, FREENIX Track, 2004, pp. 19–28.

[31] Z. Peterson, R. Burns, Ext3cow: a time-shifting file system for
regulatory compliance, ACM Transactions on Storage (TOS)
1 (2) (2005) 190–212.

[32] Microsfot Corp., Bitlocker drive encryption, http://technet.

microsoft.com/en-us/windows/aa905065.aspx (2006).

14

